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We present a finite-difference scheme for computing the Green’s function of a one-dimensional crystal. The
method enables one to derive the band structure and the density of states of this type of structures, whatever the
particular values of the potential energy. The technique also enables one to compute the influence of defects on
the density of states and on the scattering of the eigenstates of the crystal. The technique is applied to the
Krönig-Penney potential. In particular, we study the bound states of a square potential introduced in the crystal
and their influence on the conductance of the system. We also determine the surface states induced by a
termination of the Krönig-Penney potential. Our results turn out to be in excellent agreement with analytical
expressions, which proves their validity and the versatility of the technique.
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I. INTRODUCTION

Green’s functions �1–10� and finite-difference techniques
�11–14� have proven to be efficient tools in the modeling of
many problems in physics. These techniques can indeed be
adapted to a wide range of situations for which analytical
solutions do not exist. The domains to which these methods
apply include quantum mechanics �1–6�, acoustics �7�, elec-
tromagnetism �8–14�, etc. In addition to this wide applicabil-
ity, these two techniques have the advantage to be stable and
numerical schemes that still improve their efficiency are fre-
quently presented �5,6,10,13,14�.

Green’s functions are usually applied to the study of local
perturbations such as defects �10�, interfaces �3,9�, or point
excitations in a system �8�. They also give access to intrinsic
properties of these systems, like the local density of states or
conduction properties. In order to apply this technique, one
has to determine the Green’s function of the unperturbed
problem �without the defect�, which usually requires some
preliminary analytical or computational effort. Finite-
difference techniques, on the other hand, replace derivatives
by their numerical counterpart, so that differential equations
are eventually turned into a set of linear equations �11–14�.
Their resolution is then achieved, in the simplest form of the
algorithm, using standard linear-algebra routines. The
strength of this method consists in its applicability to a wide
range of equations, regardless of the particular functions that
enter these equations.

The combination of these two techniques leads to the
“discrete Green’s function” method �15,16�. In this approach
the Green’s-function methodology is actually considered as a
means to solve finite-difference equations. Reversing the
point of view, we consider in this paper the finite-difference
technique as a means to determine the Green’s function of
periodic one-dimensional systems. This gives an easy access
to intrinsic properties of these systems as well as to the in-
fluence of defects.

The paper starts in Sec. II with the development of a
finite-difference construction of the Green’s function of a

periodic one-dimensional system. We also present extensions
for studying the influence of defects on the density of states
�Sec. III� and the scattering of the eigenstates of the crystal
�Sec. IV�. Due to its pedagogical value in condensed matter
physics and the availability of analytical results, we apply in
Sec V this methodology to the Krönig-Penney potential
�17,18�. In particular, we compute the band structure and the
density of states associated with this potential. We also study
the influence of a potential well on the density of states and
the conductance of the crystal. Finally, we determine the sur-
face states of the Krönig-Penney potential. Our results turn
out to be in excellent agreement with analytical expressions,
which proves their validity and the versatility of the tech-
nique.

II. FINITE-DIFFERENCE CALCULATION
OF THE GREEN’S FUNCTION OF A

ONE-DIMENSIONAL CRYSTAL

A. Supercell representation of the one-dimensional crystal

We describe the one-dimensional crystal as the periodic
repetition of a supercell made of M elementary cells, which
describe either the basic unit of the perfect crystal or a defect
in that crystal. Each elementary cell is discretized along N
points separated by a distance �x ��x=L /N, where L is the
length of the elementary cells�. Each position in the crystal is
therefore defined by the subscripts �i , j�, where j� �1,M�
refers to the elementary cells of the crystal and i� �1,N�
refers to the discretization steps within each cell. The posi-
tion x that corresponds to the subscripts �i , j� is therefore
given by x= i�x+ �j−1�L. Within this representation of the
crystal, the first Brillouin zone is discretized along the wave
vectors k=− �

L + �l− 1
2

� 2�
ML , where l� �1,M�.

This sampling of the Brillouin zone with increments of
2�
ML is the consequence of our assumption that the crystal is
the periodic repetition of supercells made of M elementary
cells. This assumption gives therefore the physical context of
this sampling and enables one to control the consequences of
this sampling: essentially the overlapping of solutions whose
extension would be larger than the length of the supercell.*Electronic address: alexandre.mayer@fundp.ac.be
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These overlapping effects are easily controlled by taking M
sufficiently large. For the calculation of the band structure
presented in Sec. II B, any other sampling of the Brillouin
zone could actually be chosen. For the determination of the
Green’s function developed in Sec. II C, Bloch’s theorem,
however, requires that only wave vectors separated by incre-
ments of 2�

ML be selected. Considering another type of sam-
pling may be numerically efficient, but would miss the
physical grounds given here. The 1

2 that appears in the defi-
nition of k is arbitrary and prevents this quantity from being
zero. When k=0, it is indeed not possible to distinguish be-
tween states propagating to the left of the system from states
propagating to the right, and this leads to numerical difficul-
ties when computing the scattering of the eigenstates of the
crystal as in Sec. IV.

B. Calculation of the eigenstates of the crystal

Applying finite-difference techniques, one can discretize
Schrödinger’s equation in the form

−
�2

2m

�i−1 − 2�i + �i+1

�x2 + Vi
0�i = E�i, �1�

where �i and Vi
0 refer to the wave-function and potential-

energy values at x= i�x in the perfect crystal �i.e., with no
defect�. The particular value of the cell number j is not im-
portant at this point as the elementary cells of the perfect
crystal are all identical. The accuracy of our algorithm may
actually be improved by using the Numerov approximation
of the second derivative �19,20�, but this idea will not be
developed in the current paper.

In order to compute the Bloch states of the crystal, we
pose as boundary conditions �0=�N exp�−ikL� and �N+1

=�1 exp�ikL�, where the wave vector k is chosen in the first
Brillouin zone according to the prescription given in the pre-
vious section. We can then solve for ��1 ,�2 , . . . ,�N�. This
leads to the eigenvalue equation

�
d1 s se−ikL

s d2 s

� � �

s dN−1 s

seikL s dN

��
�1

�2

]

�N−1

�N

� = E�
�1

�2

]

�N−1

�N

� ,

�2�

where di=
�2

2m
2

�x2 +Vi
0 and s=− �2

2m
1

�x2 .
The eigenvalues En,k of this system provide the energies

relevant to the band structure of the crystal. The superscript n
enumerates energies associated with a given value of k. In
the remaining parts of this paper, we restrict the set of solu-
tions to those that satisfy En,k�Ecutoff and it is only neces-
sary to be able to enumerate those solutions �the particular
value of n is of no fundamental importance�.

We will refer by �i
n,k to the components of the eigenvector

associated with En,k. We assume them to be orthonormalized

according to 	i=1
N ��i

n,k�*�i
n�,k=�n,n�, where the symbol �

stands for the complex conjugate. The eigenstates of the
crystal are then given by

�i,j
n,k =

1

M

eijkL�i
n,k, �3�

where ��i,j
n,k�2 must be interpreted as the probability that an

electron in the state �n,k �band n associated with a wave
vector k� is situated in the step i of the cell j. These quanti-
ties �i,j

n,k are actually related to the physical wave function

�phys
n,k by the relation �phys

n,k �i�x+ �j−1�L�=
�i,j

n,k


�x
.

This definition of the eigenstates of the crystal is consis-
tent with Bloch’s theorem as �phys

n,k �x+L�=eikL�phys
n,k �x�.

These states turn out to be normalized on the supercell of
the crystal �	 j=1

M 	i=1
N ��i,j

n,k�2=1�. One can also check that
they are orthonormal to each other, in the sense that

	 j=1
M 	i=1

N ��i,j
n,k�*�i,j

n�,k�=�n,n���k−k��, and that the set is com-
plete. These states thus form an appropriate basis for the
following parts of this development.

C. Derivation of the Green’s function of the crystal

Using the spectral decomposition of the Green’s function,
one can derive its components in our supercell representation
of the crystal. These components turn out to be given by

Gi,j;i�,j�
0 �z� = 	

n,k

�i,j
n,k��i�,j�

n,k �*

z − En,k =
1

M
	
n,k

ei�j−j��kL�i
n,k��i�

n,k�*

z − En,k ,

�4�

where z=E+ i0+ contains the electron energy E and a small
positive imaginary component i0+ associated with the life-
time 	=� /0+ of the states being considered. This expression
is used for the calculation of the density of states �see Sec.
III�.

Mathematically and because of the physical interpretation
of i0+, this quantity also determines the width of the contri-
bution of each state �n,k to the density of states �see Sec.
III�. Ideally, for the study of stationary states, 0+ should be
taken to the limit 0+→0. In practice, 0+ is made as small as
possible to reduce its impact on computed results. It must,
however, keep a value sufficiently large to compensate for
the finite number of states �n,k actually considered for the
calculation of the density of states �discontinuous results are
indeed obtained when 0+ is too small�. 0+ is typically of the
order of the energy separation between adjacent points in the
band structure, this quantity being inversely proportional to
M. In the applications presented in this paper, we took N
=80, M =8000, and 0+=0.002 eV, which provides results
with a typical accuracy of 0.001 eV. As stated previously, the
summation in Eq. �4� is restricted to the states that satisfy
En,k�Ecutoff. In order to reach an accuracy of 0.001 eV in the
applications presented hereafter, we took Ecutoff=30 eV
�which is 20 eV larger than the highest energy considered for
the calculation of the density of states or that of the trans-
mission coefficient�. The sensitivity of the results of this pa-
per to the particular values of N, M, 0+, and Ecutoff is given
with more details in Appendix A.

When calculating the scattering of the eigenstates of the
crystal �see Sec. IV�, the energy E is one of the En,k. In
situations where the potential energy is real valued and as-
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suming that �n,k is a right-going solution, the components of
the Green’s function can be computed more efficiently using
the expression

Gi,j;i�,j�
0 �En,k�

=
4m�x2

�2 �
��i,j

n,k�*�i�,j�
n,k

W
when pos�i, j� � pos�i�, j�� ,

��i�,j�
n,k �*�i,j

n,k

W
when pos�i, j� 
 pos�i�, j�� ,


�5�

where pos�i , j�= i�x+ �j−1�L and W= ��i,j
n,k�*��i+1,j

n,k −�i−1,j
n,k �

−�i,j
n,k���i+1,j

n,k �*− ��i−1,j
n,k �*� is the numerical equivalent of the

Wronskien �9�. This quantity turns out to be constant in the
crystal, so that the particular values of i and j where this
quantity is evaluated is of a reduced significance �in order to
be as accurate as possible, W is actually evaluated by taking
its average on the N points of an elementary cell�. The deri-
vation of Eq. �5� as well as the degree of variability of W is
given in more detail in Appendix B.

III. CALCULATION OF THE DENSITY OF STATES
OF THE CRYSTAL

The density of states of the perfect crystal can be calcu-
lated using the expression

n0�E� = 	
n,k

��E − En,k� = −
1

�
Im 	

n,k

1

z − En,k , �6�

where z=E+ i0+ �0+=0.002 eV� �1�. The results obtained us-
ing the formal expression n0�E�=− 1

� Im Tr G0�E+ i0+� are
identical, but in practice this second method is less efficient
because of the time required to compute the components of
the Green’s function.

The modification in the density of states that results from
a defect introduced in the crystal can be calculated with this
second expression

�n�E� = −
1

�

d

dE
Im ln det�1AA − GAA

0 VAA� , �7�

where the subscript A refers to the region that supports the
perturbation potential �1�. The matrices 1AA, GAA

0 , and VAA
contain the components of, respectively, the unit matrix, the
Green’s function G0�z�, and the perturbation potential V in
the region A. This formula involves a matrix multiplication
between the matrices GAA

0 and VAA. For a defect that
extends on the N points of the cell j=M /2 �like in
Secs. IV A–IV D, the region A consists of the points
�1,M /2� , �2,M /2� , . . . , �N ,M /2� so that the dimension of
the matrices 1AA, GAA

0 , and VAA is N. The elements of the
Green’s function are calculated using Eq. �4�.

IV. CALCULATION OF THE SCATTERING
OF THE EIGENSTATES OF THE CRYSTAL

We focus here on the scattering of the eigenstates �n,k of
the crystal. In particular we only consider states that propa-

gate initially to the right �i.e., states associated with a posi-
tive current density�. The standard procedure �2� consists in
solving first the equation

�1AA − GAA
0 VAA��A = �A

0 , �8�

where �A
0 is a vector that contains the components of the

incident state �n,k in the perturbation region A. The vector
�A contains after resolution of this equation the values of
the scattered wave function. This formula involves a matrix
multiplication between the matrices GAA

0 and VAA, as well as
between the matrix �1AA−GAA

0 VAA� and the vector �A. For a
defect extending on the N points of the cell j=M /2, the
dimension of the vectors �A

0 and �A is N. The elements of
the Green’s function are calculated this time using Eq. �5�.

In a second step, one can use the equation

�B = �B
0 + GBA

0 VAA�A �9�

to compute the scattered wave function in any region B of
the crystal. The vectors �B

0 and �B contain the components
of, respectively, the incident state �n,k and the scattered
wave function in this region B. The matrix GBA

0 contains the
components of the Green’s function. This formula involves a
matrix multiplication between the matrices GBA

0 and VAA and
the vector �A. In order to compute the transmitted and re-
flected current densities, one actually needs the scattered
wave function on two couples of adjacent points, situated
immediately before and after the defect. For a defect extend-
ing on the N points of the cell j=M /2, the region B consists
of the four points �N−1,M /2−1�, �N ,M /2−1�, �1,M /2
+1�, and �2,M /2+1�. The dimension of the vectors �B and
�B

0 is therefore 4, and GBA
0 is a �4�N� matrix.

For a real-valued potential energy, one can express the
incident, reflected, and transmitted states as �n,k, R�n,k, and
T�n,k, respectively. Combining Eqs. �5� and �9�, the coeffi-
cients R and T turn out to be given by

R =
4m�x2

�2 	
i,j�A

�i,j
n,kVi,j�i,j

W
, �10�

T =
4m�x2

�2 	
i,j�A

��i,j
n,k�*Vi,j�i,j

W
, �11�

where Vi,j refers to the values of the perturbation potential in
the region A and �i,j to the corresponding values of the
scattered wave function �the �i,j are just the components of
the vector �A computed in Eq. �8��.

If �i , j� refers to points situated before the defect �region
of incidence�, the values of the incident and reflected parts of
the wave function are, respectively, given by �i,j

in =�i,j
n,k and

�i,j
refl=R��i,j

n,k�*. One can then compute the incident and re-
flected current densities by

Jin
n,k = −

�

m

��i+1,j
n,k �2

�x2 Im
�i,j

n,k

�i+1,j
n,k , �12�
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Jrefl
n,k = −

�

m

�R��i+1,j
n,k �*�2

�x2 Im
��i,j

n,k�*

��i+1,j
n,k �* , �13�

so that the reflection coefficient is finally given by R
=−Jrefl

n,k /Jin
n,k �21�. For a defect extending on the N points of

the cell j=M /2, these two expressions may be evaluated
using �i , j�= �N−1,M /2−1�.

Similarly, if �i , j� refers to points situated after the defect
�region of transmission�, the values of the transmitted part of
the wave function are given by �i,j

out=T�i,j
n,k. The transmitted

current density is calculated by

Jout
n,k = −

�

m

�T�i+1,j
n,k �2

�x2 Im
�i,j

n,k

�i+1,j
n,k , �14�

so that the transmission coefficient is finally given by T
=Jout

n,k /Jin
n,k. For a defect extending on the N points of the cell

j=M /2, this expression may be evaluated using �i , j�
= �1,M /2+1�.

This transmission coefficient turns out to be related to the
conductance at the energy En,k by G= 2e2

h T �the regions of
incidence and transmission are indeed identical and there is a
single incident and transmitted state for a given value of the
energy�. Considering the contribution of each energy level
En,k and taking account of their occupancy �as described by
the Fermi-Dirac distribution f�E�=1/ �1+exp���E−EF���, in
which �=1/kBT, T is the temperature, and EF is the Fermi
level�, one can demonstrate that the conductance at zero bias
of the whole system is given by

G = � dI

dV
�

V=0
= 2e2	

n,k
Jout

n,k � exp���En,k − EF��
�1 + exp���En,k − EF���2

=
T→0

2e2	
n,k

Jout
n,k��En,k − EF� . �15�

The results obtained using this relation turn out to be consis-
tent with those obtained from the transmission coefficient.

V. APPLICATION TO THE KRÖNIG-PENNEY
POTENTIAL

Due to its pedagogical value in condensed matter physics
and because of the availability of analytical results, we will
apply the technique developed in the previous sections to the
Krönig-Penney potential �17,18�. The perturbation will con-
sist of a square potential well �22–25�. Our study will also
include the surface properties of the crystal. Previous work
has essentially described this surface by a step potential
�26–32�. The present article, which also includes the image
potential, opens therefore interesting perspectives.

The length L of the elementary cells will be 0.5 nm. As
mentioned previously, we take N=80 discretization steps in
each cell, M =8000 cells for the periodic unit of the crystal,
0+=0.002 eV, and a cutoff energy Ecutoff of 30 eV. This en-
ables one to get a typical accuracy of 0.001 eV in the appli-
cations presented hereafter. For applications where a resolu-
tion of 0.01 eV is sufficient, it is appropriate to take N=40,
M =2000, 0+=0.006 eV, and Ecutoff=20 eV. The influence of

these parameters on the accuracy of our results is given in
more detail in Appendix A.

The potential V0 in the perfect crystal consists of square
barriers with a width W of 0.2 nm and a height U of 1 eV,
which are placed symmetrically in the middle of each cell.
The perturbation V we consider first extends on a single cell
�L=0.5 nm� and changes the potential V0 of that cell into
Vtot=V0+V, which is a 2-eV potential well. The perturbation
V is therefore given by V=Vtot−V0, where Vtot is the total
potential in the perturbation cell and V0 the Krönig-Penney
potential of the perfect crystal. The values of Vtot in the vi-
cinity of the perturbation cell are represented in Fig. 1.

A. Band structure and density of states of the empty lattice

In order to enable a comparison with analytical results
and highlight the influence of the Krönig-Penney potential,
we first consider the case where the height U of this potential
is zero �empty lattice�. The problem is therefore reduced to
that of an isolated square potential well.

As depicted in Fig. 2, the band structure of the perfect
crystal is reduced to that of a periodic empty lattice. The
representation includes results obtained using a plane-wave
expansion of the wave function, which shows that excellent
agreement with the finite-difference technique is achieved.
The dependence of this agreement on the number of points,
N, used to describe the elementary cell of the crystal is given
in Appendix A. In Fig. 3, we represent the density of states
n0�E� of the empty lattice �unperturbed potential� as well as
the variation �n�E� in the density of states that results from
the square potential.

The density of states n0�E� is actually calculated by three
methods: �i� that given in Eq. �6�, �ii� from the trace of the
Green’s function, and �iii� by the analytical expression
n0�E�= 2m

h
ML


2mE
�n0�E� is the number of electronic states in the

supercell of the crystal par unit energy� �18�. The three re-
sults are actually undistinguishable, which proves the valid-
ity of the technique. The way the accuracy of n0�E� actually

FIG. 1. Potential energy in the Krönig-Penney crystal. The per-
turbation consists of a square 2-eV potential well. Each cell is dis-
cretized with N=80 steps. The representation includes two elemen-
tary cells of the perfect crystal on each side of the perturbation
�M =8000 cells are considered in the simulations�.
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depends on the parameters N, M, 0+, and Ecutoff is also given
in Appendix A.

The variation �n�E� of the density of states exhibits a
negative peak at the opening of the first band, which reflects
a reduction in the number of states proper to the empty lat-

tice �because of the replacement of one cell of this lattice by
the defect�. The first positive peak, situated at −1.400 eV, is
associated with the fundamental �symmetric� bound state of
the square potential well. The second peak, situated at
−0.081 eV, is due to the second �antisymmetric� bound state.
The position of these two peaks is in close agreement with
the values of −1.4007 eV and −0.0815 eV predicted by ana-
lytical models. It was checked that the transmission coeffi-
cient, as calculated using the techniques of Sec. IV, is also in
close agreement with analytical results. The dependence of
this agreement on the parameters of our model is given in
detail in Appendix A.

In the following sections of this paper, we will focus on
the position of the first bound state of the potential well. This
bound state extends indeed in the crystal as an evanescent
state, with a decay length of 0.165 nm. This state therefore
experiences the potential of the crystal, and its energy posi-
tion must be influenced by the parameters of this potential.

B. Band structure, density of states, and scattering
of the eigenstates of the Krönig-Penney potential

Setting U=1 eV, we consider now the Krönig-Penney po-
tential as defining the elementary cell of the perfect crystal.
The band structure corresponding to this new situation is
represented in Fig. 4. The figure includes results obtained
with a plane-wave expansion of the wave function, which
proves again excellent agreement with the finite-difference
formalism �this agreement is described more quantitatively
in Appendix A�. Compared to the empty lattice, the bands
are uplifted approximately by UW

L �which gives 0.40 eV, in-
stead of 0.37 eV in the simulation�. The middle of the first
gap can be approximated by UW

L + �2

2m
� �

L
�2 �which gives

1.90 eV instead of 1.89 eV�. Finally, from the Fourier com-
ponents of the potential energy, the width of the first gap is
provided by 2U

� sin��W /L� �this gives 0.60 eV instead of
0.59 eV in the simulation�.

We represented the density of states n0�E� as well as its
variation �n�E� due to the square potential well in Fig. 5.

FIG. 2. �Color online� Band structure of the empty lattice, as
obtained with the finite-difference technique and with a plane-wave
representation of the wave function. The two results are
undistinguishable.

FIG. 3. Density of states n0�E� of the empty lattice �a� and
variation �n�E� of the density of states due to the square potential
well �b�. n0�E� is calculated by three different methods �see text�,
but results are undistinguishable.

FIG. 4. �Color online� Band structure of the Krönig-Penney po-
tential, as obtained with the finite-difference technique and with a
plane-wave representation of the wave function. The two results are
undistinguishable.
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The density of states n0�E� exhibits peaks at the opening or
closing of the bands of energy �van Hove singularities�.
These singularities come from the fact n0�E� is inversely
proportional to dE /dk, which cancels indeed at the opening
or closing of the bands �33�. The density of states reflects of
course the gaps observed in the band structure. The general
aspect of this density of states is actually similar to that of a
linear chain �34�.

The variation �n�E� of the density of states exhibits nega-
tive peaks at the position of the van Hove singularities,
which expresses again a reduction in the number of states
proper to the crystal due to the replacement of one of its
elementary cells by the defect. The first two positive peaks
are the bound states already observed in the previous section.
Their existence is bound to the evanescent nature of the wave
function in the regions external to the defect �because the
energy E of these states is below the first band of the crystal�.
The other peaks are of a similar nature. The evanescent char-
acter of these states �in the region external to the defect� is
this time conditioned by the fact their energy E is in the band
gap of the crystal. The position of the first two peaks is
−1.39 eV and 0.12 eV. We will study in detail the depen-
dence of the first peaks on the amplitude of the Krönig-
Penney potential in the next section.

Figure 6 shows the transmission coefficient of the eigen-
states of the Krönig-Penney potential. Without the square-

potential perturbation, the transmission coefficient would
take a unit value for each eigenstate of the crystal. The per-
turbation is responsible for a reduction of these values, espe-
cially in the vicinity of the opening or closing of bands of
energy. Integrating this information in the way given in Eq.
�15�, one finally characterizes the whole system by its con-
ductance G, which is 4.9�10−6 2e2

h �the Fermi level EF was
placed in the middle of the first gap like in most undoped
semiconductors and a room temperature T of 300 K was as-
sumed�. We will study in a later section the dependence of
the conductance on the depth of the square potential.

C. Dependence of the position of the first bound state
of the square potential on the amplitude

of the Krönig-Penney potential

We present in Fig. 7 the dependence of the first bound
state of the square potential well on the amplitude U of the
Krönig-Penney potential. When increasing U from
0 to 5 eV, we observe a monotonic increase of the peak po-
sition. This process is associated with the shortening of the
decay length in the regions external to the defect. When U
decreases from 0 to −5 eV, the peak position decreases

FIG. 5. Density of states n0�E� of the Krönig-Penney potential
�a� and variation �n�E� of the density of states due to the square
potential well �b�.

FIG. 6. �Color online� Transmission coefficient of the eigen-
states of the Krönig-Penney potential. The perturbation consists of a
square 2-eV potential well.

FIG. 7. Position of the first bound state of the square potential as
a function of the amplitude of the Krönig-Penney potential.
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monotonically except for a sharp transition at −3.26 eV. This
transition occurs when the bottom of the first band finally
crosses the energy level of the first bound state. The evanes-
cent character of this bound state in the regions external to
the defect becomes at this point associated with the fact the
energy E of this state is in the band gap of the crystal �in-
stead of being below the first band�. The physical idea that
regulates this sharp transition �displacement of the energy
level by 0.84 eV for a variation of U smaller than 0.01 eV in
our simulations� may find some practical interest in applica-
tions where the position of bound states is a sensitive param-
eter.

D. Dependence of the transmission of the eigenstates
of the Krönig-Penney potential on the depth

of the square potential well

We also studied the conductance of the system, as deter-
mined using Eq. �15� with a temperature T of 300 K and a
Fermi energy placed in the middle of the first gap. In par-
ticular, we computed the dependence of the conductance on
the depth of the square potential well. The results are illus-
trated in Fig. 8, where we considered the cases correspond-
ing to U=0 �empty lattice� and U=1 eV �Krönig-Penney po-
tential�. The two results consist of a series of minima and
maxima, which become increasingly separated as the depth

of the potential well increases. These maxima appear when
there is a perfect match between the incident states �after
propagation through the defect� and the outgoing states. This
condition is essentially dependent on the behavior of the
wave function in the defect, so that the maxima appear ap-
proximately at the same position in the two cases.

E. Surface states of the Krönig-Penney potential

We finally studied the surface states of the Krönig-Penney
potential. Compared to previous work related to that topic
�26–32�, the current simulations are not restricted to the
usual step-potential approximation and include the image in-
teraction in the surface potential. The defect extends here on
eight fundamental cells of the crystal and consists of two
surfaces, which are represented by the image potential

Vimage�d� = EF + W −
1

4�
0


 − 1


 + 1

e2

4d
, �16�

where d stands for the distance to either the left or right side
of the defect �depending on which value is the smallest� �35�.
We give the work function W a value of 5 eV and the relative
permittivity 
 a value of 10 �these values are typical for
semiconducting materials�. This situation is depicted in Fig.
9.

The variation �n�E� that results from this image potential
is represented in Fig. 10. The negative peaks that appear at
the opening or closing of bands of energy are associated with
the reduction of states proper to the crystal, because of the
replacement of eight fundamental cells by the defect. The
peak at −0.17 eV is associated with a state that decays expo-
nentially in the crystal, when leaving the defect. The exis-
tence of this state is permitted by the defect, as it prevents
this exponential solution to grow unphysically in the oppo-
site direction.

The two arrows indicate the energy position of the first
bound states of the image potential, as obtained applying the

FIG. 8. Conductance of the system as a function of the depth of
the square potential well. The amplitude U of the Krönig-Penney
potential is 0 eV �a� and 1 eV �b�.

FIG. 9. Potential energy in the Krönig-Penney crystal. The per-
turbation extends on eight elementary cells of the crystal and con-
sists of two surfaces described by an image potential. Each cell is
discretized with N=80 steps. The representation includes two el-
ementary cells of the perfect crystal on each side of the perturbation
�M =8000 cells are considered in the simulations�.
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formula Eimage
n =EF+W− 13.60

16n2
� 
−1


+1
�2 eV, where n enumerates

the bound states �35,36�. This formula, which actually as-
sumes that the bound states of the image potential do not
penetrate into the crystal, gives an excellent account of the
position of the first peak �which is in a band gap of the
crystal�. The other peaks are indeed associated with bound
states of the image potential, but a substantial penetration
into the Krönig-Penney crystal occurs. Their position is ac-
curately accounted for by an independent model. Finally, the
oscillations above the vacuum level are associated with
standing waves in the defect. These oscillations become
more contrasted and closer to each other as the length of the
defect increases.

The extension of the defect considered in this simulation
�eight fundamental cells� was sufficient to reproduce the en-
ergy position of the two first bound states with an accuracy
of 1 meV �the error on the third peak is around 10 meV�. In
order to reproduce surface states associated with n
3, the
surface region has to be given a larger extension. We repre-
sent in Fig. 11 the energy position of the first five surface
states as a function of the number of fundamental cells used
to represent the surface �each cell consists of N=80 elemen-
tary steps and has a length of 0.5 nm�. The result shows that
a minimum of four elementary cells is required in order to
predict the position of the first bound state with an accuracy
of 0.001 eV. The second bound state is obtained with the
same accuracy using height elementary cells. The position of
the third peak was calculated with up to 15 elementary cells.
Considering the most accurate results, the three first surface
states are finally found to be at an energy position of 6.315,
6.559, and 6.793 eV �−0.589, −0.345, and −0.111 eV rela-
tive to the vacuum level�.

VI. CONCLUSION

We presented a finite-difference scheme for computing
the Green’s function of a one-dimensional crystal. The

method enables one to derive the band structure and the den-
sity of states of this type of structures, whatever the particu-
lar values of the potential energy. The technique enables one
to compute the influence of defects on the density of states
on the transmission probability of the eigenstates of the crys-
tal and on the conductance of the system.

As application of the technique, we investigated some
properties of the Krönig-Penney potential. In particular, we
studied how the energy level of the first bound state of a
square potential well introduced in that crystal depends of
the amplitude of the Krönig-Penney potential. We also stud-
ied how the conductance of the crystal is affected by the
depth of the potential well. Finally, we computed the surface
states of the Krönig-Penney potential. The comparison with
analytical results confirm the validity of our results and
prove the versatility of the technique.
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APPENDIX A: DEPENDENCE OF THE ACCURACY
OF THE TECHNIQUE ON THE PARAMETERS

N, M, 0+, AND Ecutoff

This appendix presents with more details how the accu-
racy of our technique depends on the parameters N, M, 0+,
and Ecutoff. The band structure, as calculated using the tech-
nique of Sec. II B, is essentially affected by the parameter N.
The parameter M indeed only determines the density of
points in the band structure while Ecutoff merely specifies the
upper limit to the energies being considered. From the com-

FIG. 10. Variation �n�E� of the density of states of the Krönig-
Penney potential. The perturbation extends on eight elementary
cells of the crystal and consists of two surfaces described by an
image potential. The dashed and solid lines indicate, respectively,
the Fermi level and the vacuum level. The arrows indicate the en-
ergy position of the first two bound states of the image potential, as
obtained from an analytical formula that neglects the penetration of
these states into the crystal.

FIG. 11. Position of the surface states of the Krönig-Penney
potential, as a function of the number of cells used to describe the
surface. Each cell is represented with N=80 elementary steps and
has a length of 0.5 nm. The results represent the first �solid line�,
the second �dashed line�, the third �dot-dashed line�, the fourth �dot-
ted line�, and the fifth �solid line, top right� surface states.
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parison with the results obtained using a plane-wave tech-
nique, it turns out that the error in the solutions correspond-
ing to En,k�Ecutoff is related to N and Ecutoff by a relation of
the form


bands � Ecutoff
2 /N2. �A1�

This relation provides the maximal error, which is actually
achieved for En,k�Ecutoff �the solutions with a lower energy
are more accurate�. We represent in Fig. 12 the average and
maximal values of the error achieved on the results of Fig. 2
�band structure of the empty lattice�. The results show that
taking N=74 is sufficient to reach an accuracy always better
than 0.01 eV �with an average accuracy of 0.002 eV consid-
ering the whole set of points represented in Fig. 2�. In order
to get an accuracy always better than 0.001 eV, it is neces-
sary to take N=234.

The density of states n0�E�, as calculated using Eq. �6� of
Sec. III, depends on the parameter 0+. In principle this pa-
rameter should be as small as possible, but in practice it
cannot be too small because of the finite number of states
used for the calculation. We represent in Fig. 13 the relative
error on the density of states n0�E� of the empty lattice as a
function of 0+. This relative error is actually obtained by
integrating the differences between the n0�E� of the compu-
tation and the analytical result n0�E�= 2m

h
ML


2mE
, which serves

as a reference. The results show that there is an optimal value
for 0+, which actually depends on the number of states �n,k

used for the calculation. If we refer to by Emin and Emax to
the limits of the energies considered for the calculation of
n0�E� and if n refers to the number of states whose energy
En,k� �Emin,Emax�, the optimal value of 0+ is given approxi-
mately by

0opt
+ � 4.5

Emax − Emin

n
. �A2�

The points predicted by this formula are represented in Fig.
13. For other applications, the factor 4.5 may have to be
adapted depending on the context.

In Fig. 14, we represented the relative error on n0�E� as a
function of M for different values of the cutoff energy. The

parameter 0+ is evaluated systematically using Eq. �A2�, so
that is independent of the particular value of Ecutoff �Ecutoff

Emax�. The results show that n0�E� does not depend criti-
cally on Ecutoff, as long as Ecutoff is at least 2 eV larger than
Emax. The relative error of n0�E� decreases as M increases,
because of the higher density of points at which the band
structure is calculated. The decrease of the relative error is
inversely proportional to M, until a saturation at

bands / �Emax−Emin� finally occurs. This is well illustrated by
the result obtained using N=40 and Ecutoff=20 eV. The rela-
tive error at saturation is indeed of the order of
10−2 eV/10 eV=10−3. Considering N=80 reduces 
bands by a
factor 4, which results in a reduction of the saturation level
in Fig. 14 by this same factor. For the current application,
n0�E� is already calculated with a relative accuracy of 10−3

using M =8000. Considering M =20 000 results in an accu-
racy of the order of 5�10−4 �saturation level�.

The influence of Ecutoff is better illustrated by looking at
the accuracy of the bound states of Fig. 3�b�, which is the

FIG. 12. Mean �solid� and maximal �dashed� error on the band
structure presented in Fig. 2 �empty lattice�, as a function of N.
These errors are calculated for energies En,k�10 eV.

FIG. 13. Relative error on the density of states n0�E� of Fig. 3�a�
�empty lattice�, as a function of 0+. These results are calculated
using N=80, Ecutoff=20 eV, and M =2000, 4000, 8000, 16000, and
32000 �downwards�. The points indicated the results obtained using
0opt

+ given by Eq. �A2� in the text.

FIG. 14. Relative error on the density of states n0�E� of Fig. 3�a�
�empty lattice�, as a function of M. These results are calculated
using N=80 and Ecutoff=20 eV �solid line�, 30 eV �dashed line�,
and 40 eV �dot-dashed line�. The dotted result is obtained using
N=40 and Ecutoff=20 eV. The parameter 0+ is evaluated according
to Eq. �A2� and does not depend on the particular value of Ecutoff.
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result presented in Fig. 15. These states are obtained after
application of the techniques of Sec. III. Following the con-
clusions reached so far, we used N=80 and M =8000. The
parameter 0+ was evaluated again using Eq. �A2� �it is inde-
pendent of Ecutoff�. The results show that considering Ecutoff
=30 eV enables one to reach an accuracy of 0.001 eV in the
position of the two bound states. In order to get an accuracy
of 10−4 eV, it is necessary to take Ecutoff=95 eV. It was
checked that increasing M did not improve the accuracy
�given the value of N and M is indeed close its saturation
level�. A good choice of parameters, in order to get results
with a typical accuracy of 0.001 eV, is therefore to take N
=80, M =8000, Ecutoff=30 eV, and 0+ as given by Eq. �A2�.

APPENDIX B: DERIVATION OF THE GREEN’S
FUNCTION OF A ONE-DIMENSIONAL SYSTEM

AT AN EIGENSTATE ENERGY

We demonstrate here the expression given in Eq. �5� for
the Green’s function of a one-dimensional system. This rela-
tion applies only to situations where the energy E considered
is that of an eigenstate of the system �E=En,k�. We drop for
the moment the subscript j from the notation so that the
positions are given by x= i�x. We refer by �+ and �− to the
two solutions of Schrödinger’s equation at the energy En,k,
which correspond to either a right-propagating state �� sign�
or a left-propagating state �� sign�.

The canonical equation �En,k−H0�G0=1 relevant to the
Green’s function can be written explicitly like

�En,k − Vi
0�Gi,i� +

�2

2m

Gi−1,i� − 2Gi,i� + Gi+1,i�

�x2 = �i,i�,

�B1�

and we postulate a solution of the form

Gi,i�
0 �En,k� = A��i

−�i�
+

when i � i�,

�i�
−

�i
+ when i 
 i�.

� �B2�

For i
 i�, �A�i�
− ��i

+ is a valid solution of Eq. �B1� since
�i,i�=0 and �i

+ is a solution of Schrödinger’s equation. It has
the appropriate physical character of a right-going solution.
For i� i�, �A�i�

+ ��i
− is also a valid solution of Eq. �B1�,

since again �i,i�=0 and �i
− refers to a solution of

Schrödinger’s equation. It has the appropriate character of a
left-going solution. Finally, when i= i�, Eq. �B1� is turned
into

A��En,k − Vi
0��i

−�i
+ +

�2

2m�x2 ��i−1
− �i

+ − 2�i
−�i

+ + �i
−�i+1

+ ��
= 1. �B3�

Using the fact that �+ and �− are solutions of Schrödinger’s
equation, one can replace �En,k−Vi

0��i
−�i

+ by − �2

4m�x2 ���i−1
+

−2�i
++�i+1

+ ��i
−+ ��i−1

− −2�i
−+�i+1

− ��i
+�, so that the previ-

ous equation is finally turned into an expression that enables
one to express A as

A =
4m�x2

�2 ��i
−��i+1

+ − �i−1
+ � − �i

+��i+1
− − �i−1

− ��−1.

�B4�

The quantity W=�i
−��i+1

+ −�i−1
+ �−�i

+��i+1
− −�i−1

− � is the
numerical equivalent of the Wronskien. This quantity turns
out to be constant, so that the particular value of i used to
evaluate W is of a reduced significance. The fact W is con-
stant is demonstrated by writing �W /�x as

�W

�x
= �i

−�i+1
+ − 2�i

+ + �i−1
+

�x
− �i

+�i+1
− − 2�i

− + �i−1
−

�x

= �i
−2m�x

�2 �Vi
0 − En,k��i

+ − �i
+2m�x

�2 �Vi
0 − En,k��i

− = 0,

�B5�

where we have used again the fact �+ and �− are solutions
of Schrödinger’s equation. Numerically, for the applications
presented in this paper, the ratio between the standard devia-
tion of W and its average on the N points of an elementary
cell reaches a maximum of the order of 10−12. When consid-
ering the whole set of states for which W is evaluated, the
relative deviation is around 10−15 on average. The amplitude
of these deviations does not depend sensitively on the param-
eters of our technique.

The demonstration of Eq. �5� is finally achieved by iden-
tifying �i

+ with �i,j
n,k and �i

− with ��i,j
n,k�*. This last substitu-

tion is only valid for a real-valued potential energy, while the
results expressed in this appendix in terms of �+ and �−

would also apply to complex-valued potentials.

FIG. 15. Error on the first �solid line� and second �dashed line�
bound states of Fig. 3�b� �empty lattice�, as a function of Ecutoff.
These results are calculated using N=80 and M =8000. The param-
eter 0+ is evaluated according to Eq. �A2� and does not depend on
the particular value of Ecutoff.
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